Integer solutions to the anomaly equations for a class of chiral gauge theories

Alessandro Podo

Based on: AP and Filippo Revello — 2205.03428

The axion solution to the strong CP problem

- Experimental fact: absence of CP violation in the QCD sector
- ullet Theoretical puzzle: QCD theta angle must be extremely small: $heta < 10^{-10}$

nEDM - PRL 124 (2020) 8, 081803

Axion solution:

Peccei and Quinn, Wilczek, Weinberg (1977) + [...]

- there is a spontaneously broken <u>anomalous</u> $U(1)_{PQ}$ symmetry
- the axion is the Nambu-Goldstone boson associated to this symmetry
- the axion potential generated by QCD effects relaxes heta to 0

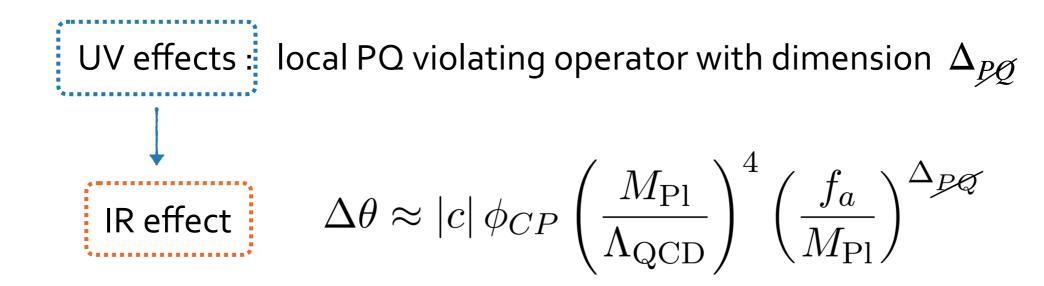
$$V(a) = -m_{\pi}^2 f_{\pi}^2 \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2 \left(\frac{a}{2f_a} - \frac{\theta}{2}\right)}$$

- θ is dynamically relaxed to <u>exactly</u> 0

Vafa, Witten (1984)

The axion quality problem

- The $U(1)_{PQ}$ symmetry is a global symmetry
- But global symmetries are explicitly broken in quantum gravity
- PQ violating effects generated at the Planck scale can spoil the axion solution



• neutron EDM experiment: $\Delta \theta \lesssim 10^{-10}$

high quality for $f_a \lesssim 10^{12} \, \mathrm{GeV} \quad \longrightarrow \quad \Delta_{PQ} \gtrsim 12$

Some proposed solutions

- Axions in string theory with exponentially small corrections
 - axions and axion-like particles arise naturally in string theory Witten (1984)
 - $\delta V(a) \sim \Lambda_{UV}^4 e^{-S_{UV}} \cos \left(a/f_a + \delta \right)$
 - It is still unclear what are the necessary conditions to ensure small UV effects

Kallosh et al. (1995), Svrcek and Witten, Conlon (2006)

Demirtas et al. (2021), Heidenreich et al. (2021)

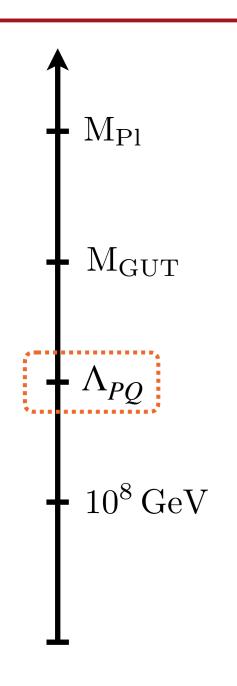
- Quantum field theories with fundamental scalar fields, extra-dimensions, etc.
 - discrete gauge symmetries, extra-dimensions, new gauge interactions, ...

Barr and Seckel, Chun and Lukas (1992) + [...]

Quantum field theories with fundamental fermions and gauge dynamics in 4D

we focus on this class of models

Models of composite axions

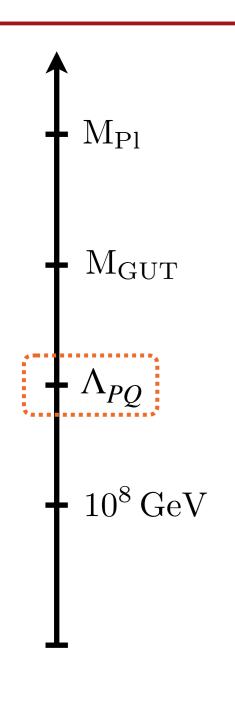


• $SU(N) \times G_W \times G_{SM}$

$$\psi_i \sim (\Box, p_i, r_i), \qquad \chi_i \sim (\bar{\Box}, q_i, \bar{r}_i), \qquad i = 1, ..., n_f$$

- r_i is a (possibly reducible) rep of $G_{
 m SM}$ or its GUT extension
- G_W is a generic compact Lie group assumed to be weak at Λ_{PQ}
- ψ_i , χ_i are left-handed Weyl fermions

Models of composite axions



• $SU(N) \times G_W \times G_{SM}$

$$\psi_i \sim (\Box, p_i, r_i), \qquad \chi_i \sim (\bar{\Box}, q_i, \bar{r}_i), \qquad i = 1, ..., n_f$$

- r_i is a (possibly reducible) rep of $G_{
 m SM}$ or its GUT extension
- G_W is a generic compact Lie group assumed to be weak at Λ_{PQ}
- ψ_i , χ_i are left-handed Weyl fermions
- simplest example:

SU(N)		$SU(3)_c$	$U(1)_{PQ}$
ψ_1			+1
ψ_2		1	-3
$\chi_1 \ \chi_2$			+1 -3

In this example:

fermionic mass terms set to zero by hand

Kim - PRD 31 (1985) 1733

Selection rules on PQ violating operators

- Not every PQ violating operator is dangerous!
- A generic PQ violating operator generates a potential only if it has non vanishing matrix element with a state containing axions:

$$\langle \psi_a | \mathcal{O}_{PQ} | 0 \rangle \neq 0$$

 The operator must be an interpolating operator for the axion, with vanishing vectorial charges.

 \mathcal{O}_{PQ} polynomial in $(\psi_r\chi_{ar{r}}),\,(\psi_r\chi_{ar{r}})^*,(\psi_r^\dagger\psi_r) ext{ and } (\chi_{ar{r}}^\dagger\chi_{ar{r}})$

It can be a composite operator built from the insertion of N local operators

$$d_{\text{eff}} = \sum_{i=1}^{N} d_i - 4(N-1)$$

Models with an abelian factor

$$SU(N) \times U(1) \times G_{SM}$$

$$\psi_i \sim (\Box, p_i, r_i), \qquad \chi_i \sim (\bar{\Box}, q_i, \bar{r}_i), \qquad i = 1, ..., n_f$$

- $SU(N) \times U(1) \times G_{SM}$
- r_i is a (possibly reducible) rep of $G_{
 m SM}$ or its GUT extension
- p_i and q_i are integer charges for $U(1)_D$ with:

$$p_i \neq -q_i$$
 $(i \neq j)$ chiral charge assignment

 The classification of PQ violating operators requires a knowledge of the U(1) charges

The anomaly cancellation equations

• Local gauge anomalies for U(1) impose non-trivial constraints

$$\begin{cases} \sum_{i=1}^{n_f} (p_i+q_i)T_i=0, & U(1)\times [G_{\rm SM}]^2 & \text{(zero hypercharge for simplicity)} \\ \sum_{i=1}^{n_f} (p_i+q_i)d_i=0, & U(1)\times [SU(N)]^2 \\ \sum_{i=1}^{n_f} (p_i^3+q_i^3)d_i=0, & [U(1)]^3 \end{cases}$$

Dimension of SM rep:

$$d_i = \dim(r_i) = \sum_{\alpha} \dim(r_i^{(\alpha)}), \qquad T_i = \sum_{\alpha} T(r_i^{(\alpha)}),$$

Dynkin index of SM rep:

$$T_i = \sum_{\alpha} T(r_i^{(\alpha)}),$$

The anomaly cancellation equations

• Local gauge anomalies for U(1) impose non-trivial constraints

$$\begin{cases} \sum_{i=1}^{n_f} (p_i+q_i)T_i=0, & U(1)\times [G_{\rm SM}]^2 & \text{(zero hypercharge for simplicity)} \\ \sum_{i=1}^{i=1} (p_i+q_i)d_i=0, & U(1)\times [SU(N)]^2 \\ \sum_{i=1}^{n_f} (p_i^3+q_i^3)d_i=0, & [U(1)]^3 \end{cases}$$

- System of polynomial equations over the integers
 - cubic equations: in general it is very hard to find all the integer solutions
 - The case of a pure U(1) gauge theory has been solved recently

Costa, Dobrescu, Fox '19, Allanach, Gripaios, Tooby-Smith '19

General solution for $n_f = 2$

- For $n_f = 2$ and chiral assignments $p_i \neq -q_i$
 - the two linear equations have to be equivalent (so $T_1d_2=T_2d_1$).

$$\begin{cases} (p_1 + q_1)d_1 + (p_2 + q_2)d_2 = 0 \\ (p_1^3 + q_1^3)d_1 + (p_2^3 + q_2^3)d_2 = 0 \end{cases}$$

- combining the two equations we obtain an homogeneous quadric

$$Q(X, Y, Z) \equiv (d_2^2 - d_1^2)X^2 + 3d_2^2Y^2 - 3d_2^2Z^2 = 0$$

Conic in projective space!

where
$$X = (p_1 + q_1), Y = (p_1 - q_1), Z = (p_2 + q_2)$$

- Integers charges correspond to the zero locus of $\mathit{Q}(\mathit{X},\mathit{Y},\mathit{Z})$ in \mathbb{PQ}^2

General solution for $n_f = 2$

Theorem 1 (see e.g. Mordell):

Given a rational point P on a conic, there are in fact infinitely many rational points and they can all be found as the intersection of a rational line through P and the conic itself.

- In our case P = [0:1:1], and we find:

$$p_{1} = \frac{n}{\mu_{2}} \tilde{p}_{1} = \frac{n}{\mu_{2}} \left[d_{1}^{2} \ell^{2} + d_{2}^{2} (3k^{2} + 6k\ell - \ell^{2}) \right],$$

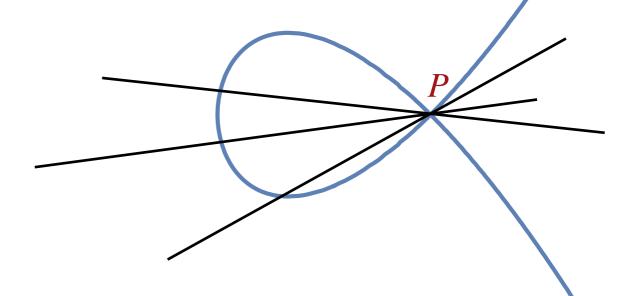
$$q_{1} = \frac{n}{\mu_{2}} \tilde{q}_{1} = \frac{n}{\mu_{2}} \left[-d_{1}^{2} \ell^{2} + d_{2}^{2} (\ell^{2} + 6k\ell - 3k^{2}) \right], \qquad n, k, \ell \in \mathbb{Z} \setminus \{0\}$$

$$p_{2} = \frac{n}{\mu_{2}} \tilde{p}_{2} = \frac{n}{\mu_{2}} \left[d_{1}^{2} \ell^{2} - 6d_{1} d_{2} k\ell - d_{2}^{2} (3k^{2} + \ell^{2}) \right], \qquad \mu_{2} = \gcd\left(\tilde{p}_{1}, \tilde{p}_{2}, \tilde{q}_{1}, \tilde{q}_{2}\right)$$

$$q_{2} = \frac{n}{\mu_{2}} \tilde{q}_{2} = \frac{n}{\mu_{2}} \left[-d_{1}^{2} \ell^{2} - 6d_{1} d_{2} k\ell + d_{2}^{2} (3k^{2} + \ell^{2}) \right],$$

General solution for arbitrary n_f

- In the general case we cannot reduce the system to a quadric.
- However, for our specific system of equations, by using one of the linear equations, we can reduce the system to:
 - a singular cubic hypersurface, with a known rational double point.
 - plus an additional linear equation.



Theorem 2 (see e.g. Mordell):

Given a rational double point P on a cubic hypersurface, there are infinitely many rational points and they can all be found as the intersection of a rational line through P and the cubic itself.

General solution for arbitrary n_f

• Setting $\nu=n_f$ for notational convenience, we find

$$p_{i} = \frac{n}{\mu_{\nu}} \tilde{p}_{1} = \frac{n}{\mu_{\nu}} \left[A_{2} - A_{1} \ell_{i} \right],$$

$$q_{i} = \frac{n}{\mu_{\nu}} \tilde{q}_{1} = \frac{n}{\mu_{\nu}} \left[-A_{2} - A_{1} m_{i} \right],$$

$$p_{\nu} = \frac{n}{\mu_{\nu}} \tilde{p}_{\nu} = \frac{n}{\mu_{\nu}} \left[A_{2} - A_{1} \ell_{\nu} \right],$$

$$q_{\nu} = \frac{n}{\mu_{\nu}} \tilde{q}_{\nu} = \frac{n}{\mu_{\nu}} \left[-A_{2} + \frac{A_{1}}{d_{\nu}} \left(\sum_{i=1}^{\nu-1} d_{i} (\ell_{i} + m_{i}) + d_{\nu} \ell_{\nu} \right) \right],$$

- charges parametrized by a set of arbitrary integers subject to a linear constraint:

$$\sum_{i=1}^{\nu-1} D_{i\nu}(\ell_i + m_i) = 0. \qquad \ell_i, m_i, n \in \mathbb{Z}$$

where $D_{ij}=d_iT_i-d_jT_i$, $\mu_{\nu}=\gcd(\tilde{p}_1,\ldots,\tilde{q}_{\nu})$, A_I are polynomials in (\mathcal{E}_i,m_i)

General solution for arbitrary n_f

$$A_{1} = 3d_{\nu}^{2} \sum_{i=1}^{\nu-1} d_{i}(\ell_{i}^{2} - m_{i}^{2}) + 3d_{\nu}^{3} \ell_{\nu}^{2} - 3d_{\nu} \left(\sum_{i=1}^{\nu-1} d_{i}(\ell_{i} + m_{i}) + d_{\nu} \ell_{\nu} \right)^{2},$$

$$A_{2} = d_{\nu}^{2} \sum_{i=1}^{\nu-1} d_{i}(\ell_{i}^{3} + m_{i}^{3}) + d_{\nu}^{3} \ell_{3}^{3} - \left(\sum_{i=1}^{\nu-1} d_{i}(\ell_{i} + m_{i}) + d_{\nu} \ell_{\nu} \right)^{3}.$$

- the knowledge of the U(1) charges allows us to identify the form of gauge invariant PQ violating local operators.
 - For $\nu = 2$ and $\nu = 3$ the gauge invariance of PQ violating operators of the form:

$$\mathcal{O}_{\mathcal{PQ}} = (\psi_1 \chi_1)^{\kappa_1} \dots (\psi_{\nu} \chi_{\nu})^{\kappa_{\nu}}$$

is independent from the charge assignments — depends only on SM representations

Some open questions

- We found all the charge assignments such that local gauge anomalies cancel
 - what about global (non-perturbative) anomalies?
- Are there more efficient ways to classify charge assignments such that operators with a given property (e.g. PQ violating operators)
 are forbidden up to a given dimension?
- Do all the consistent charge assignments admit an embedding in string theory?